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S U h1 MAR Y 

This paper considers complex transcendental eigenvalue problems where one is interested in pairs 

of eigenvalues that arc restricted to take rcal values only. Such eigenvalue problems arise in dy- 

namic stabhty analysis of non-conservative physical systems - flutter analysis of aeroelastic systems, 

to name one example. Some available solution methods are discussed and a new method is pre- 

sented. Two computational approaches are described for analj6cal evaluation of the sensitivities 

of these eigenvalues when they arc dependent on other parameters. The algorithms presented are 

illustrated through examples. 
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Introduction 

Dynamic analysis of physical systems often requires the solution of an eigenvalue problem. Opti- 

mixition of dynamic systems also requires efficient computation of the derivatives of the eigenvalues 

and eigenvectors. The computation of these derivatives is referred to as sensitivity analysis. De- 

velopment of numerical algorithms for the evaluation of eigenvalues and eigenvectors (Willcinson, 

1965) and, recently, their derivatives with respect to system parameters (e.g., Murthy and Haftka, 

1988), for the h e a r  algebraic eigenvalue problem 

where the matrix A is complex non-hermitian has attracted extensive research efforts. The 

eigenvalues 2 and eigenvectors u for such problems are also generally complex. Some of these 

methods and algorithms can be directly extended to the ]-matrix (Frazer, Duncan and Collar, 1960) 

eigenproblem 

where the elements of the complex non-hermitian matrix A are polynomials in the eigenvalue, I.. 

A discussion of the ).-matrix eigenproblem can be found in Rokne (1985). Extensive analltical 

results on the sensitivities of the eigenvalues and eigenvectors of eq. (2) are presented by Taylor and 

Kane( 1975) for the special case where the polynomials are quadratic. These sensitivities were used 

by Fritzen and Kordmann (1982) for predicting the stability behavior of non-consenative rotor 

dynamic models. 

In this paper, we are concerned with the solution and sensitivity analysis of the eigenvalue 

problem 

A(i1 ,  i2)u = 0 

where the elements of th complex non-hexmitian matrix A are transcendental functions of the pair, 

Comparing eq. ( 3 )  to the ).-matrix 

eigenproblem of eq. (2), we note two differences: 1) the pair of real numbers I., and i., replace the 

and 2 ,  , which are restricted to take real values only. 
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complex number j. and hence play the role of eigenvalues and 2) the elements of A in eq. (3) are 

transcendental functions of the eigenvalues instead of polynomial functions. We also note that, if 

I., and R ,  are allowed to take on arbitrary complex values, eq. (3) does not represent a well-defined 

eigenvalue problem. The cigenvcctors u in eq. (3) remain complex-valued. 

This problem was motivated by the need to automate the flutter analysis in aeroelastic opti- 

mization problems. blurthy and Kaza (1988) automated the flutter analysis procedure using the 

direct solution approach which results in the eigenvalue problem of the form given by eq. (3). The 

flutter analysis procedures of Cardani and Mantegazza(l978) and bleyer(1988) also result in 

eigenvalue problems of this form. Here, the matrix A involves the generalized stiffness, mass and 

aerodynamic matrices of the aeroelastic structure, which is undergoing steady-state oscillations in 

a state of neutral stability. The generalized stiffness, mass and aerodynamic matrices are usually 

computed by speciahed structural and aerodynamic analysis programs which are computationally 

intensive. Depending upon the formulation, the eigenvalue 2 ,  is a speed parameter such as the 

Mach number or the rotational speed at flutter and the eigenvalue %2 is a frequency parameter such 

as the reduced frequcnc! at flutter. In aeroelastic literature, the pair I., and L 2  is called the matched 

flutter point and the eigenvector u the flutter mode. The viewing of the flutter a n a l ~ s i s  problem 

as a complex eigenvalue problem involving a pair of real eigenvalues was first proposed by Frazer 

(1946) and is called the direct solution approach. An alternate approach to flutter analysis, known 

as the U-g method (Bi5phghoff, Ashle) and Halfman, 19551, which decomposes the solution of 

eq. (3) into a series of h e a r  algebraic eigenvalue problems, has been more popular in aeroelastic 

literature, perhaps because of the increased physical insight it offers. However, the direct solution 

approach is more attractive in terms of automating the flutter analysis procedure and also more 

efficient, as discussed by Xlurthy and Kaza( 1988), because it avoids troublesome eigenvalue tracking 

and replaces the inner-outer iteration loop required by the U-g method by a single iteration loop. 

The objective of the present paper is to present (i) a solution method for calculating the 

eigenvalues and the eigenvectors of eq. (3) and (ii) methods for sensitivity analysis of eq. (3). The 

solution method was developed by Murthy and Kaza (1988) but is presented here in a more general 

context and with additional examples. The sensitivity analysis methods appear to be new. It is 
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assumed that the computation of the matrix A is much more expensive in terms of CPU time than 

its inversion. This is typically the case in aeroelastic applications (Murthy and Kaza, 1988). 

Solution Methods 

The eigenvalue problem of eq. ( 3 )  differs from those of eqs. ( I )  and (2) in many respects. LVhile 

the conventional eigenproblems of eqs. (1) and (2) define eigenpairs, the eigenvalue problem of eq. 

(3) defines eigentriples, each consisting of ).], %, and u. Also, it is well-known that the number of 

the eigenpairs of eqs. (1) depends only on the order of the matrix and, in the case of eq. (2), on the 

matrix order and the highest degree of the polynomials in 1.. In the case of eq. (3), the number of 

the eigentriples is not known in advance and could be infinite, finite or none. In addition, while 

the eigenvalue problems of eqs. (1) and (2) admit bi-orthogonal relationships between the left and 

the right eigenvectors and can be reduced to standard canonical forms, no such relationships and 

I canonical forms are known to exist for the eigenvalue problem defined by eq. (3). This has im- 

I portant consequences in terms of sensitivity analysis and is discussed further in the next section. 

I In this paper, we will restrict our attention to those problems that satisfy the follow-ing as- 

sumptions: 

There exist real values of i., and 2, such that 

For such values of i., and j.2, there exists a 

eq. (3) is satisfied for some vector u. 

neighborhood in the %,, %2-plane in which the 

members of the matrix A are continuously differentiable functions of E . ,  and 2,. 

These assumptions are usually satisfied in aeroelastic applications. Solution of eq. ( 3 )  consists 

of finding the pairs of values of i., and R 2  such that eq. ( 3 )  is satisfied for a non-zero vector u, and 

the determination of the vector u itself w i t h  a constant complex multiplier. 

There are essentially two different approaches to the development of numerical schemes for 

this problem. In the frst approach, the condition of a vanishing determinant for the existence of 

4 



a non-zero vector u is used to obtain the values of 1, and 1,. The eigenvector u is obtained inde- 

pendently afterwards. Thus, 

dct[A(Al, 22)] = D(E.1, A2) = 0 (4) 

Eq. (4) is one complex equation in two real unknowns, A ,  and A,, and can be solved by any of a 

variety of quasi-h'ewton methods. Eq. (4) is first rewritten in terms of its real and imaginary parts 

as 

Eqs. ( 5 )  represent two nonlinear equations in two unknowns, E., and E.,. The typical iteration 

scheme for their solution would then be 

where k is the iteration number and J is the <acobian matrix of eq. ( 5 )  an 

J =  

is given by 

(7) 

If the Jacobian is anali.tically evaluated, eq. (6 )  represents Keu;ton's method. Quasi-Newton 

methods appro?timate the Jacobian in some manner. Hassig (1971) and Stark (1984), for example, 

have used this approach, solving eq. (4j by the Regula Falsi and the secant methods respectively. 

In the second approach, proposed by Card& and Mantegazza (1978), the eigenvalue prob- 

lem of eq. (3) along with a normalizing condition on the eigenvector u are treated as a set of non- 

h e a r  equations in the unknowns, u, i., and L,. These nonlinear equations are then solved using 

standard techniques, obtaining the complete eigentriple simultaneously. b'hile this approach ob- 

viously results in a much larger system of non-linear equations than the previous determinant 

equation approach, it has recently been advocated by Meyer (1988) over the determinant equation 
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approach because “the basic drawback to solving the determinant equation is that since it is im- 

practical to compute derivatives of the determinant with respect to system parameters, only first- 

order convergent methods such as Regula Falsi or a secant method can be used, instead of more 

rapidly-converging methods such as Sewton’s method ” and ‘ I  convergence to the wrong root, 

known as mode switching, can occur when two modes are nearly equal ”. Meyer (1988) presented 

a continuation method for the solution of eq. (3) using the second approach. 

This paper addresses the first drawback noted by Meyer (1988). A practical iterative scheme, 

for solving the determinant equation with a convergence rate that is more rapid than the secant 

method and approaching that of Kewton’s method, is proposed. It is first shown that all the de- 

rivatives of the determinant can be evaluated at the cost of a single matrix inversion. Further, a 

quasi-Sew-ton method, based on Broyden’s updates for the derivatives of the matrix A (rather than 

for the Jacobian matrix as is done in Droyden’s method), is shown to be more rapidly convergent 

by means of examples. The second drawback of convergmg to the wrong root will not be addressed 

in this paper. Iiowcvcr? t h s  is felt to be only a minor limitation because most practical aeroelastic 

structures do not often give rise to nearly equal modes that flutter. 

The eigenvector u (flutter mode. in acroelastic literature) and the left eigenvector Y can be 

computed very cfficiently using the information available at the time of convergence of the iterative 

scheme in an inverse iteration procedure. 

Computation of Eigenvalues 

We consider the computation of the eigenvalue-pairs for eq. (3) by solving eqs. ( 5 )  through the it- 

erative scheme of eq. (6). Xote that analytical evaluation of the Jacobian requires the derivatives 

of the characteristic determinant, D. The derivatives of the characteristic determinant are computed 

by using the follo\ving result, known as the Trace theorem, proved by h c a s t e r (  1963): 

If the elements of A(z) are  differentiable functions of E ,  then for any il for which the charac- 

teristic determinant D ( x )  # 0, 
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Using eqs. (7) and (8), the iterative scheme of eq. (6) can be written as 

where 

gR + igI = trace of ( A- l % )  

h, + ih, = trace of ( I $ )  A- 

Thus, the trace theorem gives us a practical method for calculating the derivatives of the de- 

terminant. Sotc that, in evaluating eq. (lo), matrix multiplication need not be performed, since 

only the trace is required. The computational cost of the matrix inversion required in eqs. (10) is 

not s i d i c a n t  if the use of such derivatives improves the convergence rate of the determinant 

equation solution. This is because the cost of inverting the matrix A is usually ne&gible in com- 

parison to the cost of evaluating it. The iteration is terminated when 1, and >., satisfy some con- 

vergence criteria or the matrix A cannot be inverted. 

In eq. ( I O ) ,  if the derivatives of the matrix A with respect to the eigenvalues and i., are 

evaluated analjtically, thcn eq. (9) is equivalent to NeM-ton’s method and thus gives quadratic 

convergence. Anal>-tical differentiation of A is not often practical and one resorts to approximate 

evaluation of the derivatives of A,  sacrificing quadratic convergence and hence increasing the num- 

ber of iterations required for convergence. Approximate derivatives of A can be evaluated simply 

b>- ftnite-differences. However, finite-differencing increases the computational cost of each iteration, 

further degrading the efficiency of the iterative procedure. It is therefore proposed that the deriva- 

tives of A be evaluated during the iteration using Broyden’s update formula (Dennis and More, 

1977), which is used in Broyden’s method to update the Jacobian. Numerical examples shown later 

indicate that this updating scheme, in combination with eqs. (9) and ( IO) ,  results in an iterative 

scheme with a high rate of convergence (close to that of Sewton’s method) with the same cose per 

iteration as that of secant and Broyden’s methods. 
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The elements of A are assumcd to be linear functions of 1, and 1, in the direction of the last 

iterative move. Hence, the derivatives of A at the k-th iterative solution satisfy 

In addition, the derivatives of A in the direction orthogonal to the last iterative move are as- 

sumed to be the same at the k-th and the (k - I)-th iterative solutions. This implies 

Eqs. (11)-(13) uniquely determine (a), and ( z)(k) . Using the notation 

= - and C5j.2(k) = j .2 (k- , )  - j . 2 ( k ) ,  ( e)(k) is obtained as 

A similar expression can be obtained for by simply exchanging the subscripts 1 

and 2 for 2 in eq. (13). 

Computation of Eigenvectors 

The eigenvector u (flutter mode, in aeroelastic literature) can be computed very efficiently using the 

information available at the time of convergence of the iterative scheme, eq. (9) ,  in an inverse iter- 
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ation procedure. If u(,,) is any vector that is not totally deficient in the eigenvector, the following 

inverse iteration scheme can be used to calculate the eigenvector. 

k = 1,2, ... 

At the time of convcrgence of the iteration given by eq. (9), the matrix A-1 is already available in 

decomposed form and can be used directly in eq. (1%. 

Sensitivity calculations sometimes also need the left eigenvector associated with A and 22. 

The left eigenvector is defined by the equation 

Once again, ini,erse iteration can be used to calculate the left eigenvector as follows. If v(o) is any 

vector that is not totally deficient in the left eigenvector, 

k = 1,2, ... 

As in the case of the linear eigenvalue problem, one step of the inverse iteration scheme is normally 

sufficient to obtain the eigenvector within a reasonable accuracy. There is again no need for another 

decomposition to solve eq. ( 1 7 ,  as [AT-’ = [A-’Ir and the prcvious decomposition can be used 

by replacing backward substitution with forward substitution. 

Numerical Examples 

The performance of the above algorithms is demonstrated through two numerical examples. Both 

examples present complex transcendental eigenvalue problems having known pairs of real 

eigenvalues. Example 1 uses trigonometric functions and example 2 uses hyperbolic functions. 

The examples \+-ere designed to illustrate the various features of the algorithms and for easy verifi- 

cation of the results. 
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Example 1:For this example, the complex transcendental matrix is given by 

This eigenproblem has an infinite number of pairs of real eigenvalues. A family of such pairs is 

given by 

r = O , + 1 , + 2  ,... s = O , f 1 , $ 2  ,... 

The nominal design point is represented by the values 

z l = l + i  q = l - i  
a1 = 2  "2 = - 1  

P I  = 2  p2 = -3 

. The eigenvalue pair of interest is given by E., = 0.5 and i., = 1.5. 

Example 2:ln the second example, the eigenproblem involves the complex transcendental matrix 

A(i.,,  E . 2 ) ,  the elements of which are given by 

p = l , 2  ,..., n 9 = 1 , 2  ,..., n 

414) and 67 represent complex constants chosen randomly for this example. ap,  p p  and dp are real 

quantities that serve as design parameters. It can easily be shown that when the elements of the 

matrix A are given by eq. (21), the eigenproblem of eq. (3) has at least n pairs of real eigenvalues 

that are independent of the constants $7 and a?$. These are given by 
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There are additional pairs of real eigenvalues that depend on $7 and $7. 

The results presented here for example 2 are for n = 6 and the nominal design point is re- 

presented by the values 

2 pp = -0.05p 

3 6 = -0 .005~ P 

f o r p f  2 and 

a2= 1 

/?2 = -0.5 

5, = -0.1 

The eigenvalue pair of interest is given by i., = 0.5 and i., = 0.1. 

Rate of convergence 

The rate of convcrgcncc of the present solution procedure was earlier shown by Murthy and Kaza 

(1988) to be more rapid than that of the generahed secant method for the case of the aeroelastic 

analysis of propfan blades. In thls paper, further results are presented comparing the present sol- 

ution procedure, represented by the iterative scheme of eq. (9), to Broyden’s method and Sewton’s 

method. In Broyden’s method, the directional update is applied to the Jacobian matrix. The 

present procedure differs from Broyden’s method in that the directional update is applied to the 

system matrix rather than the Jacobian matrix. The eigenproblems associated with both the above 

examples are solved by Broyden’s method, the present procedure and Newton‘s method. For 

Broyden’s method and the present procedure, the exact analytical derivatives uerc used to calculate 

the initial Jacobian matrix. For Broyden’s method and the present procedure, only the matrix A 

has to be evaluated once per iteration. For Yewton’s method, the matrix A and its anall-tical de- 
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rivatives with respect to 1, and 2, are evaluated once per iteration. The same convergence criterion 

was used for all results. Tables 1 and 2 show, for the eigenproblems posed by examples 1 and 2 

respectively, the number of iterations required for convergence starting with various initial guesses. 

The tables demonstrate that the present procedure is far superior to Broyden's method in terms of 

the number of iterations required for convergence. Comparison to Newton's method also demon- 

strates that at most two more iterations are required with the present procedure than with Newton's 

method. Thus, the present solution procedure appears to have a rate of convergence that is close 

to that of the quadratically convergent Newton's method. 

Sensitivity ArzaZysis 

Let the matrix A and hence the cigentriple 2,, 1, and u be functions of design parameter vector p 

with individual parameters denoted by Creek subscripts, e.&. pZ.  We assume that the design pa- 

rameters are all red and that the pair i., and 2, is a distinct solution for eq. (I). 

Eigenvalue Sensithities 

8). , ai., 
'PZ 'Pa 

The objective is to obtain expressions for the eigenvalue sensitivities, - and - . Differen- 

tiating eq. (4) with respect to the design parameter p3, we have, 

Eq. (25), once again involves the derivatives of the determinant of A , this time evaluated at the 

solution obtained at the convergence of the iterative scheme given by eq. (9). However, the trace 

theorem in the form of eq. (8) cannot be used to calculate these derivatives, as the the determinant 

vanishes at the solution 2, and i.,. Hence, eq. (8) is rewritten as 

dA -- aD - trace of (adjA -) 
as as 

using the relation between the inverse and the adjoint matrices, 
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Direct calculation of the adjoint matrix for use in eq. (26) is computationally expensive and can 

be avoided as shown below. 

Frazer, Duncan and Collar (1960) have shown that, if A(2) is a A-matrix and I ,  is a simple root 

of the characteristic equation det A().) = 0, then the rows and columns of the adjoint matrix, 

adjA(i.o) , are directly proportional respectively to the left and right eigenvectors corresponding to  

&. It can similarly be shown that the adjoint matrix has the same property in the case of the 

transcendental eigcnprobem with real eigenvalues, given by eq. (3, if the left eigenvector is defined 

by eq. (16). Thus, if 2 ,  and 1, form a simple root pair of eq. (4) and u and v satisfy eq. (3) and 

eq. (16) respectively, then udjA(j.,, has rows and columns directly proportional to v and u re- 

spectively. That is, 

T udjA(i. l ,  = duv 

where d is some non-zero constant dependent on the eigenvector normalization. Thus, the deriv- 

atives of the determinant at the solution, A, and can be expressed as 

T dA 
as: da  
-- a’ - d trace of (uv - )  

T dA -- - d v  - d D  
aa aa 

Using eq. (29) to evaluate the derivatives of the determinant in eq. (25) and cancelling out the un- 

known constant d,  we obtain the sensitivity equation 

Since the eigenvalues I., and L, are restricted to real values and the design parameters are assumed 

to be real, the sensitivities of the eigenvalues, - and -, must also be real. Thus, eq. (30) 
ai. I ai. 2 

aP, aP, 
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a i ,  
is a complex equation, in the two real unknowns, - and - . Unlike eq. (4), the sensitivity 

aPa aPa 
equation is h e a r  and it can be solved exactly. Sobieski(l986) pointed out that the sensitivity 

equation is always linear, even for nonlinear systems. Solution of eq. (30) gives us the following 

expressions for the eigenvalue sensitivities 

T aA u v ~  aX 
Im(v - -@ a). ap, a i2  

T aA U T ~  aX 
Im(v - -io ap.2 

a i l  a)., 

-- _ -  

where the bar indicates the complex conjugate. These expressions are essentially the discrete 

equivalents of the flutter point sensitivities developed by Seyranian (1982) for the case of a slender 

elastic beam in incompressible flotv. Sote that, whde the eigenvectors are only determined up to 

an arbitrary complex multiplier in the absence of appropriate normalizing conditions, the eigenvalue 

sensitivities are independent of the normalizing condition. 

Integrated Corn put at ion of Eigenvalue and Eigenvector Sensitivities 

,Murthy and Haftka ( 1  988) described two computational approaches, the Direct approach and the 

Adjoint approach, for calculating the sensitivities of the eigenvalues and eigenvectors of linear al- 

gebraic eigenvalue problems and showed that both the approaches are competitive, under different 

sets of conditions. The Adjoint approach requires all the left and the right eigenvectors and the 

Direct approach requires no left eigenvectors. The lack of bi-orthogonality relationships in the case 

of the eigenvalue problem of cq. (3) eliminates the possibility of utilizing the Adjoint approach for 

calculating derivatives of the eigenvectors, because the bi-orthogonality property is crucial for such 

an approach. 

\{%en eigenvector sensitivities are required, both the eigenvalue and the eigenvector sensitiv- 

Bindolino and ities can be computed in an integrated manner, using the Direct approach. 
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Mantegazza (1987) presented one such method, which operates in the red domain rather than the 

complex domain. The normalization condition they used for the eigenvectors is unreliable when 

the eigenvectors are complex. hfurthq' and Haftka (1988) discussed the merits of different normal- 

ization conditions to be used in sensitivity analysis computations. In the following, a Direct ap- 

proach, requiring no left eigenvectors and based on proper eigenvector normalization, is developed 

for the integrated computation of the eigenvalue and eigenvector sensitivities for the eigenproblem 

posed by eq. (3). 

Direct differentiation of eq. (3) with respect to the parameter pa gives 

ai\ 81-1 aA a)-2 
ap, ai., ap, ai.2 ap, 

U- +- U- - aA u+- 

which can be written in matrix form as 

[A *" di.,  ".I ai., 

(33)  

(33) 

Eq. (34) consists of n linear equations in (n + 2) unknowns, which are the n components of 

du and - and 7. Thus, two additional conditions must be stipulated in order to obtain 

a solution of eq. (34). One of these is obtained by normalizing the eigenvector to make it unique 

and the other by restricting - and - to real values. 

ai., d l ,  

a& aPZ OP, 

ai., a)., 
a P Z  

The first condition is easily enforced by normalizing the eigenvector so that a non-zero ele- 

ment is unit).. Let urn be such an element. Then, since urn = 1, 

and the rn-th column of the coefficient matrix in eq. (34j can be deleted. Eq. (35) also reduces the 

number of unknowns in eq. (33)  by one. 



The second condition is best enforced by partitioning eq. (34) as follows. Writing the I-th 

equation of the system given by eq. (34) separately, we have 

ai. ar., 
'Pa 8Pu aPu "a + n  -=- C-+q- ax 

and 

where 

'I-th row and m-th column deleted 

= 'm-th element deleted 

"1 = { ' ] f - t h  element deleted 

"2 = { e '}l-th element deleted 

"a = { 2 ' ] l - t h  element deleted 

T af = I - th row of A with m - th column deleted 

(+} '11 = I - th element of 

q 2  = I - th element of 

y3( = I - th element of 

ax Eluninating - from eqs. (36) and (371, we have 
a& 
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where 

T -1  
b,= [C 1 a, 

The condition of real eigenvalue sensitivities is now enforced on eq. (38) to obtain 

aj., du a)-l 

f3Px 8PX 
and -. Thus, the follo\ving procedure can be used to obtain the derivatives - , - 

1. Sormalue thc eigenvector such that urn = 1. 

2. Form the LU dccornposition of the matrix C .  

3 .  Solve b, = [Cq-]al by forward substitution. 

dj., ai., 
ap, % 

a& 

4. Calculate - and - from eqs. (39) and (30). 

ax 5 .  Calculate - from eq. (36) by backward substitution. 

dum 

aPm dP% a& 
- 0  Expand dx to - by setting - - aU 6 .  

The proper choice of the two indices I and m is of great importance for the above procedure 

to calculate accurate sensitivities. The indices must be chosen so that the resulting matrix C is 

well-conditioned. Sote that C is obtained from the singular matrix j.2) by deleting the row 

corresponding to the index I and the column corresponding to the index m. Hence, in the absence 

of multiple solutions, for the matrix C to be non-singular, the I-th row and the m-th column of A 
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must be linearly dependent on the other rows and the other columns respectively. In other words, 

C is non-singular if and only if vl # 0 and urn # 0. (For a detailed discussion of this point, see 

h’elson, 1976). Therefore, to obtain a well-conditioned matrix C, a reasonable choice of the indices 

Iand rn would be such that vl is the element of largest absolute value in v and urn is the element of 

largest absolute value in u. Thus, wide the direct method does not require the left eigenvector in 

principle, it may still be necessary to calculate the left eigenvector in order to choose the index I that 

results in a well-conditioned matrix C . 

Finite Difference Sensitivity Analysis 

The eigenvalue and eigenvector sensitivities can also be calculated by finite differences. While the 

finite difference approach has the virtues of simplicity and ease of implementation, it is known to 

suffer from efficiency and accuracy problems. For example, the finite difference approach requires 

the solution of the nonlinear cquation, eq. ( 3 ) ,  once for each design variable. On the other hand, 

the analjqical approach requires the solution of only a linear equation, eq. (30) or (33), with the 

same coefficient matrix for all design variables. €iou,ever, Haftka (1985) has pointed out that, for 

iteratively solved problems, the finite difference methods are usually superior to the analjtical 

methods in terms of efficiency, as the solution at the nominal point is usually a very good initial 

guess for the solution at the perturbed point. 

The accuracy problems still remain, because of the truncation and the round-off errors in- 

herent to the finite difference approach. For iteratively solved problems, these drfficulties are 

exacerbated due to the presence of errors arising from the early termination of the iterative process 

and the different initial guesses used for the nominal and the perturbed solutions. Haftka (1985) 

presented a novel technique for controlling the magnitude of the errors associated with iteratively 

solved problems. More accurate derivatii.es are obtained by treating the converged solution as the 

exact solution of an approximate equation instead of the approximate solution of an exact equation. 

The finite difference approach is not considered in this paper but is mentioned here to alert the 

reader to an important alternative to the analqtical approach. 
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Numerical Examples 

A computer program was developed that implements both of the approaches to the sensitivity 

analysis. The above algorithms were applied to the two numerical examples considered earlier. 

Both examples present complex transcendental eigenvalue problems having known real valued 

eigenvalues that are dependent on certain parameters in a known manner. 

Example 3For  this example, sensitivity analysis of the eigenproblem presented in example 1, with 

respect to the parameters a1 and , is considered. The analj-tical sensitivities of the family of 

eigenvalue-pairs given by eq. (19) can be expressed as 

r = O , + l , & 2  ,.,. s = O , + l , + 2  (... 

Example 4:For this example, the eigenproblem is the one described in example 2 and the design 

parameters considered are ap, p, and 6, . The sensitivities of the eigenvalues given by eq. (22) can 

anal>.ticdy be expressed as 

dj.2 1 

aP 

-=-- 
a i  I -- 

2 - 0  aa, $6, (35) 

The algorithms presented above correctly calculated the sensitivities of the pairs of real eigenvalues 

for the example problems. 
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Inaccuracy of the derivatives calculated by eq. (14) 

Eq. (31) and (32) require the derivatives of the matrix A with respect to the design parameter of 

interest, pz,  and the two eigenvalues, 2, and J2. It may be expected that approximations to the 

derivatives of A with respect to A ,  and i., , which are available from eqs. (14) at the convergence 

of the iterative scheme of eq. (S), can be used in eqs. (31) and (32). However, this is not advisable 

because these approximations do not necessarily converge to exact values even though the cor- 

rections in the iterative scheme converge to Newton corrections. T h i s  behavior is demonstrated in 

Table 3 for typical elements of the system matrix of example 1. Table 3 demonstrates that the de- 

rivatives of A at the convergence of the iterative scheme of eq. (9) deviate significantly from exact 

values, unless the initial guess is extremely good. Large deviations were observed in the case of 

example 2 also. As pointed out by Dennis and iMore (1977), this behavior is not unexpected for 

ceaain quasi-Seuton methods including hoyden’s method. Hence, it is recommended that the 

derivatives of A be re-evaluated at the solution for use in sensitivity analysis. 

In this paper, the complex transcendental eigenproblem with pairs of real eigenvalues is considered. 

An improved computational method for obtaining the eigenvalues of this eigenproblem is pre- 

sented. The method is based on determinant iteration and achieves a high rate of convergence that 

is close to that of SeuTon’s method with the same cost per iteration as the generalized secant and 

Broyden’s methods. The method utilizes the philosophy of Broyden’s updates, except that the 

updates are applied to the system matrix derivatives rather than the Jacobian matrix as in Broyden’s 

method. Computational algorithms are also presented for calculating the sensitivities of these 

eigenvalues and the corresponding eigenvectors with respect to design parameters. One algorithm 

computes the sensitivities of the eigenvalues only, while the second algorithm computes the sensi- 

tivities of the eigenvalues as well as the eigenvectors in an integrated manner. The algorithms pre- 

sented are verified by applying them to example problems. These algorithms are expected to prove 

useful in aeroelastic sensitivity analysis and optimization procedures. 
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0.4 
0.7 
0.3 
0.3 
0.7 
0.7 
0.9 
0.9 
0.4 
0.4 

Table 1. - COMPARISOh’ OF RATE OF CONVERGENCE - Example 1. 
( Eigenvalue-pair of interest is 2, = 0.5 and 2, = 1.5 ) 

1.5 
1 .s 
I .3 
1.7 
1.3 
1.7 
1.9 
1 . 1  
1.9 
1 . 1  

Initial guess 

method 
Seiton‘s- 
method 

3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
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Table 2. - CO.MPARISOK OF RATE OF CONVERGENCE - Example 2. 
( Eigenvalue-pair of interest is 1, = 0.5 and R ,  = 0.1 ) 

Newton's Present 
method method 

5 5 

Initial guess 

Broyden's 
method 

19 0.51 

0.54 

0.60 
0.58 
0.49 
0.49 
0.48 

0.11 

0.14 

0.20 
0.09 
0.11 
0.12 
0.11 

9 

Initial guess 
i. i 
0.4 1 .s 
0.7 1 .s 
0.3 1.3 
0.3 1.7 
0.7 1.3 
0.7 1.7 
0.9 1.9 
0.9 1.1 
0.4 1.9 
0.4 1.1 

14 
6 
5 
6 
4 

Derivative at Convergence 
aa, 2 W . l  da22/aL, 

0.000 2.000 
0.000 2.000 
0.104 1.947 

-0.104 1.937 
-0.104 1.947 
0. I04 1.947 
0.404 1.797 

-0.404 1.797 
-0.085 1.961 
0.085 1.961 

10 

20 
6 
5 
6 
4 

KO Conver- 
gence 

No Conver- 
gence 

21 
14 
38 
8 

Table 3. - ACCURACY OF MATRIX DERIVATIVES AT CONVERGESCE - Example 1. 
( Eigenvalue-pair of interest is 1, = 0.5 and = 1.5 ) 
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